Sains Malaysiana 54(12)(2025): 2937-2952

http://doi.org/10.17576/jsm-2025-5412-12

 

A Single-Step Approach with Seven Hybrid Points for the Solution of Stiff Differential Equations

(Pendekatan Langkah Tunggal dengan Tujuh Titik Hibrid untuk Penyelesaian Persamaan Pembezaan Kaku)

 

IBRAHIM MOHAMMED DIBAL1,*, YEAK SU HOE2 & SUZARINA AHMED SUKRI2

 

1Department of General Studies, School of General and Remedial Studies, Federal Polytechnic Damaturu, 1006 Yobe State, Nigeria

2Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia

 

Received: 29 March 2025/Accepted: 25 December 2025

 

Abstract

This research presents a novel single-step hybrid block method with seven intra-step points that achieves ninth-order accuracy, providing an accurate and computationally efficient approach for solving first-order stiff differential equations. The method is designed to solve first-order stiff differential equations with high efficiency and precision while maintaining a constant step size throughout the computation. To further improve accuracy, Lagrange polynomial interpolation techniques are employed to approximate function values at selected points within each step. The fundamental properties of the proposed scheme are rigorously analysed to establish its mathematical validity. These analyses confirm that the method satisfies the essential conditions of consistency, stability, and convergence, thereby ensuring its reliability for applications. The proposed method performs effectively when applied to stiff and oscillatory differential equations. Comprehensive numerical experiments are conducted, and the results consistently demonstrate the robustness and effectiveness of the proposed method across various test problems. Furthermore, the findings indicate that the method often outperforms several existing numerical techniques in terms of both accuracy and computational efficiency.

Keywords: Block hybrid method; intra-step points; stiff equations; zero stability

 

Abstrak

Penyelidikan ini memberikan satu kaedah blok hibrid satu langkah yang baharu dengan tujuh titik intra-langkah yang mencapai ketepatan tertib kesembilan, sekali gus menyediakan pendekatan yang tepat dan cekap dari segi pengiraan untuk menyelesaikan persamaan pembezaan biasa tegar tertib pertama. Kaedah ini direka dengan teliti untuk menyelesaikan persamaan pembezaan tertib pertama dengan kecekapan dan ketepatan yang tinggi sambil mengekalkan saiz langkah yang malar sepanjang pengiraan. Bagi meningkatkan lagi ketepatan, teknik interpolasi digunakan untuk menganggar nilai fungsi pada titik terpilih dalam setiap langkah. Sifat asas skim yang dicadangkan dianalisis secara teliti bagi membuktikan kesahihan matematiknya. Analisis ini mengesahkan bahawa kaedah tersebut memenuhi syarat penting iaitu kekonsistenan, kestabilan dan penumpuan, sekali gus menjamin kebolehpercayaannya untuk aplikasi praktikal. Selain itu, kaedah ini menunjukkan kebolehsuaian yang tinggi, menjadikannya sesuai untuk pelbagai jenis permasalahan. Secara khusus, kaedah ini berprestasi dengan berkesan apabila digunakan pada persamaan pembezaan tegar dan berayun. Uji kaji berangka yang menyeluruh telah dijalankan dan keputusannya secara tekal menunjukkan keteguhan dan keberkesanan kaedah yang dicadangkan merentasi pelbagai masalah ujian. Tambahan pula, keputusan kajian menunjukkan bahawa kaedah ini sering mengatasi beberapa teknik berangka sedia ada dari segi ketepatan dan kecekapan pengiraan.

Kata kunci: Kaedah hibrid blok; kestabilan sifar; persamaan tegar; titik intra  

 

REFERENCES

AbdulAzeez, K.J. 2024. Two-step hybrid block method for solving second order initial value problem of ordinary differential equations. Earthline Journal of Mathematical Sciences 15: 1047-1065. https://doi.org/10.34198/ejms.14524.10471065

Adee, S.O., Yahaya, M. & Yari, B. 2025. An eighth-stage implicit Runge-Kutta type scheme for first-order ordinary differential equations. International Journal of Development Mathematics 2(2): 53-63.

Bisheh-Niasar, M. & Ramos, H. 2023. A computational block method with five hybrid-points for differential equations containing a piece-wise constant delay. Differential Equations and Dynamical Systems 33(1): 1-14. https://doi.org/10.1007/s12591-022-00624-9

Dahlquist, G.G. 1963. A special stability problem for linear multistep methods. Bit 3(1): 27-43. https://doi.org/10.1007/BF01963532

Dhandapani, P.B., Baleanu, D., Thippan, J. & Sivakumar, V. 2019. Fuzzy type RK4 solutions to fuzzy hybrid retarded delay differential equations. Frontiers in Physics https://doi.org/10.3389/fphy.2019.00168

Duromola, M.K., Momoh, A.L. & Akinmoladun, O.M. 2022. Block extension of a single-step hybrid multistep method for directly solving fourth-order initial value problems. American Journal of Computational Mathematics 12: 355-371. https://doi.org/10.4236/ajcm.2022.124026

Henrici, P. 1962. Discrete Variable Method in Ordinary Differential Equations. New York: John Wiley & Sons. https://doi.org/http://dx.doi.org/10.1002/zamm.19660460521

Kinda, A., Qureshi, S., Soomro, A. & Awadalla, M. 2023. An optimal family of block techniques to solve models of infectious diseases: Fixed and adaptive stepsize strategies. Mathematics 11(05): 1135. https://doi.org/https://doi.org/10.3390/math11051135

Lambert, J.D. 1974. Computational methods in ordinary differential equations. Journal of Applied Mathematics and Mechanics 54(7): 523. https://doi.org/https://doi.org/10.1002/zamm.19740540726

Motsa, S. 2022. Overlapping grid-based optimized single-step hybrid block method for solving first-order initial value problems. Algorithms 15(11): 427. https://doi.org/10.3390/a15110427

Nor Ain Azeany Mohd Nasir, Zarina Bibi Ibrahim, Khairil Iskandar Othman & Mohamed Suleiman. 2012. Numerical solution of first order stiff ordinary differential equations using fifth order block backward differentiation formulas. Sains Malaysiana 41(4): 489-492.

Norhayati Rosli, Noor Amalina, Nisa Arif & Yeak Su Hoe. 2019. Stability analysis of explicit and semi-implicit euler methods for solving stochastic delay differential equations. Proceedings of the Third International Conference on Computing, Mathematics and Statistics (ICMS2017). pp. 179-186. https://doi.org/10.1007/978-981-13-7279-7_22

Obarhua, F.O. 2023. Three-step four-point optimized hybrid block method for direct solution of general third order differential equations. Asian Research Journal of Mathematics 19(6): 25-44. https://doi.org/10.9734/arjom/2023/v19i6664

Olukunle, O.E. & Okoro, F.M. 2019. A block scheme with Bernstein single step method for direct solution second order differential equations. International Journal of Research and Innovation in Applied Science IV(Xii): 99-103.

Qureshi, S., Ramos, H., Soomro, A., Akinfenwa, O.A. & Akanbi, M.A. 2024. Numerical integration of stiff problems using a new time-efficient hybrid block solver based on collocation and interpolation techniques. Mathematics and Computers in Simulation 220: 237-252. https://doi.org/10.1016/j.matcom.2024.01.001

Qureshi, S., Akanbi, M.A., Shaikh, A.A., Wusu, A.S., Ogunlanran, O.M., Mahmoud, W. & Osman, M.S. 2023. A new adaptive nonlinear numerical method for singular and stiff differential problems. Alexandria Engineering Journal 74: 585-597. https://doi.org/10.1016/j.aej.2023.05.055

Ramos, H., Qureshi, S. & Soomro, A. 2021. Adaptive step-size approach for Simpson’s-Type block methods with time efficiency and order stars. Computational and Applied Mathematics 40: 219. https://doi.org/10.1007/s40314-021-01605-4

Rufai, M.A., Carpentieri, B. & Ramos, H. 2023. A new hybrid block method for solving first-order differential system models in applied sciences and engineering. Fractal and Fractional 7(10): 703. https://doi.org/10.3390/fractalfract7100703

Sekar, S. & Nalini, M. 2015. Numerical solution of the linear and nonlinear stiff problems using adomian decomposition method. IOSR Journal of Mathematics 11(5): 2278-5728. https://doi.org/10.9790/5728-11541420

Shampine, L.F. & Watts, H.A. 1969. Block implicit one step methods. Mathematics of Computation 23: 731-740. https://doi.org/http://dx.doi.org/10.1090/S0025-5718-1969-0264854-5

Tassaddiq, A., Qureshi, S., Soomro, A., Hincal, E. & Shaikh, A.A. 2022. A new continuous hybrid block method with one optimal intrastep point through interpolation and collocation. Fixed Point Theory and Algorithms for Sciences and Engineering 2022: 22. https://doi.org/10.1186/s13663-022-00733-8

Wang, L., Wang, F. & Cao, Y. 2019. A hybrid collocation method for fractional initial value problems. Journal of Integral Equations and Applications 31(1): 105-129. https://doi.org/10.1216/JIE-2019-31-1-105

Zarina Bibi Ibrahim & Amiratul Ashikin Nasarudin. 2020. A class of hybrid multistep block methods with A – Stability for the numerical solution of stiff ordinary differential equations. Mathematics 8(6): 914. https://doi.org/doi:10.3390/math8060914

 

*Corresponding author; email: mohammeddibal5@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous