Sains Malaysiana 54(12)(2025): 2937-2952
http://doi.org/10.17576/jsm-2025-5412-12
A
Single-Step Approach with Seven Hybrid Points for the Solution of Stiff
Differential Equations
(Pendekatan Langkah Tunggal dengan Tujuh Titik Hibrid untuk Penyelesaian Persamaan Pembezaan Kaku)
IBRAHIM MOHAMMED DIBAL1,*, YEAK SU
HOE2 & SUZARINA AHMED SUKRI2
1Department of General Studies,
School of General and Remedial Studies, Federal Polytechnic
Damaturu, 1006 Yobe State, Nigeria
2Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,
81310 Skudai, Johor Bahru, Johor, Malaysia
Received: 29 March 2025/Accepted: 25 December 2025
Abstract
This research presents a novel single-step hybrid
block method with seven intra-step points that achieves ninth-order accuracy,
providing an accurate and computationally efficient approach for solving
first-order stiff differential equations. The method is designed to solve
first-order stiff differential equations with high efficiency and precision
while maintaining a constant step size throughout the computation. To further
improve accuracy, Lagrange polynomial interpolation
techniques are employed to approximate function values at selected points
within each step. The fundamental properties of the proposed scheme are
rigorously analysed to establish its mathematical validity. These analyses
confirm that the method satisfies the essential conditions of consistency,
stability, and convergence, thereby ensuring its reliability for applications. The
proposed method performs effectively when applied to stiff and oscillatory
differential equations. Comprehensive numerical experiments are conducted, and
the results consistently demonstrate the robustness and effectiveness of the
proposed method across various test problems. Furthermore, the findings
indicate that the method often outperforms several existing numerical
techniques in terms of both accuracy and computational efficiency.
Keywords: Block
hybrid method; intra-step points; stiff equations; zero stability
Abstrak
Penyelidikan ini memberikan satu kaedah blok hibrid satu langkah yang baharu dengan tujuh titik intra-langkah yang mencapai ketepatan tertib kesembilan, sekali gus menyediakan pendekatan yang tepat dan cekap dari segi pengiraan untuk menyelesaikan persamaan pembezaan biasa tegar tertib pertama. Kaedah ini direka dengan teliti untuk menyelesaikan persamaan pembezaan tertib pertama dengan kecekapan dan ketepatan yang tinggi sambil mengekalkan saiz langkah yang malar sepanjang pengiraan. Bagi meningkatkan lagi ketepatan, teknik interpolasi digunakan untuk menganggar nilai fungsi pada titik terpilih dalam setiap langkah. Sifat asas skim yang dicadangkan dianalisis secara teliti bagi membuktikan kesahihan matematiknya. Analisis ini mengesahkan bahawa kaedah tersebut memenuhi syarat penting iaitu kekonsistenan, kestabilan dan penumpuan, sekali gus menjamin kebolehpercayaannya untuk aplikasi praktikal. Selain itu, kaedah ini menunjukkan kebolehsuaian yang tinggi, menjadikannya sesuai untuk pelbagai jenis permasalahan. Secara khusus, kaedah ini berprestasi dengan berkesan apabila digunakan pada persamaan pembezaan tegar dan berayun. Uji kaji berangka yang menyeluruh telah dijalankan dan keputusannya secara tekal menunjukkan keteguhan dan keberkesanan kaedah yang dicadangkan merentasi pelbagai masalah ujian. Tambahan pula, keputusan kajian menunjukkan bahawa kaedah ini sering mengatasi beberapa teknik berangka sedia ada dari segi ketepatan dan kecekapan pengiraan.
Kata kunci: Kaedah hibrid blok; kestabilan sifar; persamaan tegar; titik intra
REFERENCES
AbdulAzeez, K.J. 2024. Two-step hybrid block method for
solving second order initial value problem of ordinary differential equations. Earthline
Journal of Mathematical Sciences 15: 1047-1065.
https://doi.org/10.34198/ejms.14524.10471065
Adee, S.O., Yahaya, M. & Yari, B. 2025. An eighth-stage implicit
Runge-Kutta type scheme for first-order ordinary differential equations. International
Journal of Development Mathematics 2(2): 53-63.
Bisheh-Niasar, M. & Ramos, H. 2023. A computational block
method with five hybrid-points for differential equations containing a
piece-wise constant delay. Differential Equations and Dynamical Systems 33(1): 1-14. https://doi.org/10.1007/s12591-022-00624-9
Dahlquist, G.G. 1963. A special stability problem for linear
multistep methods. Bit 3(1): 27-43. https://doi.org/10.1007/BF01963532
Dhandapani, P.B., Baleanu, D., Thippan, J. & Sivakumar, V.
2019. Fuzzy type RK4 solutions to fuzzy hybrid retarded delay differential
equations. Frontiers in Physics https://doi.org/10.3389/fphy.2019.00168
Duromola, M.K., Momoh, A.L. & Akinmoladun, O.M. 2022.
Block extension of a single-step hybrid multistep method for directly solving
fourth-order initial value problems. American Journal of Computational
Mathematics 12: 355-371. https://doi.org/10.4236/ajcm.2022.124026
Henrici, P. 1962. Discrete Variable Method in Ordinary
Differential Equations. New York: John Wiley & Sons.
https://doi.org/http://dx.doi.org/10.1002/zamm.19660460521
Kinda, A., Qureshi, S., Soomro, A. & Awadalla, M. 2023.
An optimal family of block techniques to solve models of infectious diseases:
Fixed and adaptive stepsize strategies. Mathematics 11(05): 1135.
https://doi.org/https://doi.org/10.3390/math11051135
Lambert, J.D. 1974. Computational methods in ordinary
differential equations. Journal of Applied Mathematics and Mechanics 54(7): 523. https://doi.org/https://doi.org/10.1002/zamm.19740540726
Motsa, S. 2022. Overlapping grid-based optimized single-step
hybrid block method for solving first-order initial value problems. Algorithms 15(11): 427. https://doi.org/10.3390/a15110427
Nor Ain Azeany Mohd Nasir, Zarina Bibi Ibrahim, Khairil
Iskandar Othman & Mohamed Suleiman. 2012. Numerical solution of first order
stiff ordinary differential equations using fifth order block backward
differentiation formulas. Sains Malaysiana 41(4): 489-492.
Norhayati Rosli, Noor Amalina, Nisa Arif & Yeak Su Hoe.
2019. Stability analysis of explicit and semi-implicit euler methods for
solving stochastic delay differential equations. Proceedings of the Third
International Conference on Computing, Mathematics and Statistics (ICMS2017).
pp. 179-186. https://doi.org/10.1007/978-981-13-7279-7_22
Obarhua, F.O. 2023. Three-step four-point optimized hybrid
block method for direct solution of general third order differential equations. Asian Research Journal of Mathematics 19(6): 25-44.
https://doi.org/10.9734/arjom/2023/v19i6664
Olukunle, O.E. & Okoro, F.M. 2019. A block scheme with
Bernstein single step method for direct solution second order differential equations. International Journal of Research and Innovation in Applied Science IV(Xii): 99-103.
Qureshi, S., Ramos, H., Soomro, A., Akinfenwa, O.A. &
Akanbi, M.A. 2024. Numerical integration of stiff problems using a new
time-efficient hybrid block solver based on collocation and interpolation
techniques. Mathematics and Computers in Simulation 220: 237-252.
https://doi.org/10.1016/j.matcom.2024.01.001
Qureshi, S., Akanbi, M.A., Shaikh, A.A., Wusu, A.S., Ogunlanran,
O.M., Mahmoud, W. & Osman, M.S. 2023. A new adaptive nonlinear numerical
method for singular and stiff differential problems. Alexandria Engineering
Journal 74: 585-597. https://doi.org/10.1016/j.aej.2023.05.055
Ramos, H., Qureshi, S. & Soomro, A. 2021. Adaptive step-size
approach for Simpson’s-Type block methods with time efficiency and order stars. Computational and Applied Mathematics 40: 219.
https://doi.org/10.1007/s40314-021-01605-4
Rufai, M.A., Carpentieri, B. & Ramos, H. 2023. A new
hybrid block method for solving first-order differential system models in
applied sciences and engineering. Fractal and Fractional 7(10): 703.
https://doi.org/10.3390/fractalfract7100703
Sekar, S. & Nalini, M. 2015. Numerical solution of the
linear and nonlinear stiff problems using adomian decomposition method. IOSR
Journal of Mathematics 11(5): 2278-5728.
https://doi.org/10.9790/5728-11541420
Shampine, L.F. & Watts, H.A. 1969. Block implicit one
step methods. Mathematics of Computation 23: 731-740.
https://doi.org/http://dx.doi.org/10.1090/S0025-5718-1969-0264854-5
Tassaddiq, A., Qureshi, S., Soomro, A., Hincal, E. &
Shaikh, A.A. 2022. A new continuous hybrid block method with one optimal
intrastep point through interpolation and collocation. Fixed Point Theory
and Algorithms for Sciences and Engineering 2022: 22.
https://doi.org/10.1186/s13663-022-00733-8
Wang, L., Wang, F. & Cao, Y. 2019. A hybrid collocation
method for fractional initial value problems. Journal of Integral Equations
and Applications 31(1): 105-129. https://doi.org/10.1216/JIE-2019-31-1-105
Zarina Bibi Ibrahim & Amiratul Ashikin Nasarudin. 2020. A
class of hybrid multistep block methods with A – Stability for the numerical
solution of stiff ordinary differential equations. Mathematics 8(6): 914.
https://doi.org/doi:10.3390/math8060914
*Corresponding
author; email: mohammeddibal5@gmail.com